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Abstract
This paper deals with the determination of a pair (q, u) in the heat conduction
equation

ut − uxx + q(x, t)u = 0,

with initial and boundary conditions
u(x, 0) = u0(x), ux |x=0 = ux |x=1 = 0,

from the overspecified data u(x, t) = g(x, t). By the time semi-discrete
scheme, the problem is transformed into a sequence of inverse problems
in which the unknown coefficients are purely space dependent. Based on
the optimal control framework, the existence, uniqueness and stability of the
solution (q, u) are proved. A necessary condition which is a couple system of
a parabolic equation and parabolic variational inequality is deduced.

PACS numbers: 02.30.Zz, 44.10.+i
Mathematics Subject Classification: 35R30, 49J20

1. Introduction

In this paper, we study an evolutional type inverse problem of recovering the radiative
coefficient of heat conduction equation from some additional conditions, which has important
application in a large field of applied science. The problem can be stated in the following
form:

Problem P. Consider the following heat conduction equation:

∂u

∂t
= ∂2u

∂x2
− q(x, t)u, (x, t) ∈ Q = (0, 1) × (0, T ] (1.1)

u(x, 0) = u0(x), x ∈ (0, 1) (1.2)

ux(0, t) = ux(1, t) = 0, t ∈ (0, T ] (1.3)
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where u0(x) is a given smooth function on interval (0, 1), q(x, t) is an unknown coefficient in
(1.1). Assume that

u(x, t) = g(x, t), x ∈ (0, 1) (1.4)

is given. Determine the functions u and q satisfying (1.1)–(1.3).

In physics, this model (1.1) describes the heat conduction procedure in a given
homogeneous medium Q. The initial condition (1.2) means that at t = 0, there exists an
initial temperature distribution u0(x) on interval (0, 1), while the homogeneous Neumann
boundary condition (1.3) means that there is no heat exchange with outside from t = 0 to
t = T , i.e., the heat conductor is kept heat insulating all the time. The unknown coefficient
q(x, t) is called the radiative coefficient which is often related to the medium property. If
the medium is inhomogeneous with some input source f (x, t), then the equation should be
written as

ut − ∇(p(x)∇u) + q(x, t)u = f (x, t), (x, t) ∈ Q.

The coefficient p(x) represents the heat conduction property such as heat capacity, while
q(x, t)u(x, t) is also the heat source which depends both on location x, time t and temperature
u, except for the heat source f (x, t). In fact, q(x, t) describes the medium property of
generating heat source or heat sink (see [4]).

The tasks of inverse heat problems are detection of heat conduction properties of the
medium from some information of the solution, i.e., the determination of the unknown
coefficient(s) in the heat equation from some additional information about u(x, t). However,
there is a fundamental difference between the direct and the inverse problem. It is well
known that in all cases the inverse problem is ill-posed or improperly posed in the sense
of Hardamard, while the direct problem is well-posed (see [18, 23]). The ill-posedness,
especially the numerical instability, is a main difficulty for problem P. Since there always exist
inevitable errors in the extra condition g(x, t) which is often obtained by experiments, a small
perturbation in g(x, t) may result in a big change in q(x, t), which may make the obtained
results meaningless (see [26, 30]).

Inverse coefficient problems for parabolic equations are well studied in the literature.
The inverse heat conduction problems using final temperature as inversion input data have
been considered carefully, see [14, 22] for determining p(x) in the above equation with
q(x, t) = 0 from the measurement given u(x, T ). In this model, the heat conduction
procedure is considered only for the input linear source f (x, t), ignoring the nonlinear source
q(x, t)u(x, t) within the medium. In [19, 20], the inverse problem of identifying the principle
coefficient a(x) in 1D equation

ut − a(x)uxx + b(x)ux + c(x)u = f (x, t)

from final overdetermination data u(x, t0) has been studied carefully by using an optimal
control framework. The existence of a(x) and a well-posed algorithm are obtained. Recently,
the authors of [7, 21, 24] consider an evolutional type inverse problem and derive a stability
result for the case a = a(x, t). In [11], an inverse problem of identifying the local volatility
from market prices of options is resolved by Tikhonov regularization method. The uniqueness
and stability of determining a(x) in the parabolic equation

∂tu + Au + a(x)u = 0

from the final measurement data is considered in [17], where zero initial condition and
nonzero boundary condition Bu = φ in ∂Q× (0, T ) are assumed. The theoretical issues such
as existence and uniqueness of coefficients inversion for parabolic equation are also studied
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in [18, 27]. In [16], the inverse problem of identification of a discontinuous source term XD

in the parabolic equation

∂tu − �u = XD in � × (0, T )

from information on the flux is investigated, where D is a domain constraint in the domain
� ∈ R2.

The purely space dependent case q = q(x) has been investigated by several authors,
e.g., in [4, 6, 28, 29, 31]. In [6], Hölder space method is applied to determine the unknown
coefficient q(x) from additional information given at t = T . Existence and uniqueness for
the determination of q(x) are derived in [28] by using the contracting mapping principle. In
[4, 31], motivated by heuristic arguments, the optimization method is applied to stabilize the
inverse problem. The authors of [4] prove the existence of minimizer and the convergence of
approximate solution in finite-dimensional space, while in [31], the authors construct a new
control functional and prove the existence and uniqueness of minimizer.

The case of purely time dependent q = q(t) has been extensively studied by several
authors (see, for instance, [2, 3, 8–10, 25]).

Finally, we note that the inverse problems of determining a source term F(x, t) in the
following parabolic equation:

ut = (k(x, t)ux)x + F(x, t), (x, t) ∈ �T = (0, 1) × (0, T )

have received considerable attention in the literature (see, for instance, [1, 15, 32]).
In this paper, we use an optimal control framework [19, 20, 31] to discuss problem P

mainly from the theoretical analysis angle (see [4] which also used the optimal control method,
but focused more on numerical computations). Being different from the problem in [4, 31],
where the function q is purely space dependent, i.e., q = q(x), the unknown coefficient q
in this paper not only depends on the space variable x, but also depends on the time t, i.e.,
q = q(x, t). The methods used in [4, 31] are not applicable for problem P, for the reason that
if one attempts to recover q(x, t) from the extra condition (1.4) by optimization method as he
did in [4, 31], i.e., construct a control functional

J = J (q(x, t))

and minimize it to obtain q(x, t), then it will be quite difficult for one to find an appropriate
form of the control functional of which the minimum is stable. However, in [31] we obtain
that if an extra condition

u(x, T ) = f (x), x ∈ (0, 1)

is given, where f (x) is a given function, then the unknown coefficient q(x) can be identified
uniquely and stably under the condition that T is small enough (see figure 1). Motivated by
the idea in [31], we find a way to reconstruct the unknown coefficient q(x, t) for problem P.
We solve it by using semi-discrete scheme, i.e., we find q(x, tn) step by step, where tn = nh

and h = T
N

, n = 0, 1, . . . , N . In fact, if q(x, t0), . . . , q(x, tn−1) has been defined, then from
a known extra condition

u(x, tn) = g(x, tn),

we find q(x, tn) such that

Jn(q(·, tn)) = inf
q∈A

Jn(q),

where A is an appropriately admissible set and Jn(q) is a control functional (see figure 2).
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u(x, T ) = f(x)

q = q(x)
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Figure 1. The recovery of q(x).
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Figure 2. The recovery of qn(x).

As indicated in [31], if h is small enough, q(x, tn) can be identified uniquely and stably.
Thus, for any h we obtain an approximate function qh(x, t) defined as follows:

qh(x, t) =
{

q(x, tn), t = tn,

linear, tn−1 � t � tn.

In the sense of numerical computation, qh(x, t) can be taken as an approximate solution of
q(x, t). Since the main purpose of this paper is to discuss the inverse problem from the
theoretical analysis angle, we then thoroughly analyse the asymptotic behavior of qh(x, t) as
h → 0.

The paper is organized as follows. In section 2, problem P is transformed into a sequence
of optimal control problems Pn and the necessary condition which must be satisfied by the
minimum of problem Pn is obtained. In order to discuss the asymptotic behavior of qh(x, t),
we establish some uniform estimates for the approximate solution in section 3. In section 4,
we prove that there exists a subsequence of qh(x, t) which converge to a function q(x, t) and
deduce the necessary condition which must be satisfied by q(x, t). Finally, the uniqueness
and stability of q(x, t) are obtained.

2. Time semi-discrete scheme

The well-known Schauder theory for parabolic equations guarantees that, for any given positive
coefficient q(x, t) ∈ Cα, α

2 (Q̄), there exists a unique solution u(x, t) ∈ C2+α,1+ α
2 (Q̄), to

equation (1.1)–(1.3).
Assume that additional condition (1.4) satisfies

g ∈ Cα, α
2 (Q̄), (2.1)
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and there exists a constant C such that

‖g‖
C

α, α
2 (Q̄)

� C, max
0�t�T

‖g(·, t)‖H 1(0,1) � C. (2.2)

Remark 2.1. The extra condition (1.4) is essential for the inverse problem P. It means that
continuous observation of u(x, t) is available on Q̄, i.e.,

u(x, t) = g(x, t), (x, t) ∈ Q̄,

where g(x, t) is a known function. The extra condition (1.4) facilitates the theoretical analysis,
while in practice it is not applicable. In fact, it is impossible to measure the temperature u(x, t)

at every position x and every time t. The observations of u(x, t) can only be given as the
discrete data, e.g., an appropriate form is

u(xi, tn) = g(xi, tn), i = 1, 2, · · · ,M; j = 1, 2, · · · , N; (xi, tn) ∈ Q̄, (2.3)

where M and N are two positive integers. Therefore, additional condition (1.4) and the
regularity of g(x, t) (2.1)/(2.2) are obtained from (2.3) by the interpolation and smoothing
technique. In such case, g(x, t) is not the exact solution of (1.1)–(1.3) but the ‘artificial’
solution which surely contains errors.

It should be pointed out that if g(x, t) is indeed the exact solution of (1.1)–(1.3), then the
unknown function q(x, t) can be found directly from equation (1.1) by the following formula:

q(x, t) = gxx − gt

g
, (2.4)

provided g(x, t) �= 0, (x, t) ∈ Q. However, formula (2.4) is not applicable for g(x, t) which
contains errors. Since we have to compute the numerical derivatives of g(x, t) with respect to
x and t, particularly the second derivative with respect to x, arbitrarily small changes in g may
lead to arbitrarily large changes in its derivative, which may make the obtained q meaningless.
Moreover, for the inexact data g(x, t) it is difficult to guarantee that there exists at least a
solution to the original inverse problem, thus the optimization technique should be applied to
get some general solutions.

To reconstruct the unknown coefficient, we introduce the following time semi-discrete
cost functional and time semi-discrete optimal control problem.

Let

0 = t0 < t1 < · · · < tN = T

be a partition of interval [0, T ] with tn = nh and h = T
N

. Let

A = {q(x)|0 < α0 � q � α1, q ∈ H 1(0, 1)}
be the admissible set, where α0 and α1 are given positive constants.

Beginning with a given function q0 ∈ A with

q0 ∈ W 1,∞(0, 1),

we introduce the following optimal control problem:

Problem Pn: assume that q0, q1, · · · , qn−1 ∈ A are known. Find qn ∈ A such that

Jn(qn) = min
q∈A

Jn(q), (2.5)

where

Jn(q) = σ

2

(
1

h
‖q − qn−1‖2

L2(0,1) + ‖∇q‖2
L2(0,1)

)
+

1

2h
‖u(·, tn; q) − g(·, tn)‖2

L2(0,1), (2.6)
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u(x, t; q) is the solution of (1.1)–(1.3) in [0, tn] corresponding to coefficient

q̃ =

⎧⎪⎨
⎪⎩

t − tn−1

h
q(x) +

tn − t

h
qn−1(x), tn−1 � t � tn,

t − tk−1

h
qk(x) +

tk − t

h
qk−1(x), tk−1 � t � tk, 1 � k � n − 1,

(2.7)

and σ > 0 is a regularization parameter.

Remark 2.2. The requirement on q(x, t) > 0 is not essential. For q(x, t) with lower bound
c0 < 0, we can use the transform v(x, t) = u(x, t) e(c0−1)t , which satisfies

vt − vxx + (q(x, t) − c0 + 1)v = 0.

Then we have

q(x, t) − c0 + 1 > 0.

So the same kind of inverse problem for function v(x, t) is constituted with q(x, t)−c0 +1 > 0.
We can use the optimization technique proposed in this paper to recover q(x, t) − c0 + 1.

Theorem 2.1. There exists a minimizer qn ∈ A of J (q), i.e.

Jn(qn) = min
q∈A

Jn(q).

The proof of this theorem is available in [31].
Such a qn is called an optimal control of problem Pn. From this theorem, the functions

q0, q1, . . . , qN ∈ A are well defined when q0 ∈ A is given. For (x, t) ∈ Q̄, let

qh(x, t) = t − tn−1

h
qn(x) +

tn − t

h
qn−1(x), tn−1 � t � tn, n = 1, · · · , N.

qh(x, t) is called the discrete reconstruction of unknown coefficient. Then recovering the
unknown coefficient is reduced to finding the sequence of optimal control and investigating
the behavior of the sequence of optimal control and the discrete reconstruction qh(x, t) as
h → 0.

Remark 2.3. By the local uniqueness obtained in [31], with a given q0 ∈ A, the coefficients
q1, . . . , qN can be uniquely identified as

√
h

σ
→ 0. Then the uniqueness of qh(x, t) is the

direct deduction of the uniqueness of qn(x), n = 0, 1, . . . , N.

Remark 2.4. Without the first item σ
2h

‖q − qn−1‖2
L2(0,1)

in (2.6), the control functional Jn

will be same to that constructed in [31]. For such Jn, its minimizer qn can also be recovered
uniquely and stably. However, it may be very difficult to illustrate the smoothness of the
discrete reconstruction qh(x, t), especially the smoothness of the limiting function of qh(x, t)

as h → 0, which is essential to obtain the stability of the limiting function. Motivated
by the creative work in [21] where an evolutional type inverse problem arisen in finance is
resolved completely, we also add the cost item σ

2h
‖q − qn−1‖2

L2(0,1)
to the control functional

Jn to stabilize the inverse problem. Other approaches to construct the control functional are
available in [7, 24].

Now we derive the necessary condition for the optimal control problem Pn as follows:

6
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Theorem 2.2. Assume that q0 ∈ A is given. Let qn ∈ A be an optimal control of problem Pn,
n = 1, . . . , N and uh(x, t) be the solution of (1.1)–(1.3) in [0, T ] corresponding to coefficient
q̃ = qh(x, t). Then we have, for any ω ∈ A

σ

∫ 1

0

[
qn − qn−1

h
(ω − qn) + ∇qn · ∇(ω − qn)

]
dx

+
1

h

∫ tn

tn−1

∫ 1

0

t − tn−1

h
(qn − ω)uhvh dx dt � 0, (2.8)

where vh(x, t) satisfies the following equation:

−vh
t − vh

xx + qh(x, t)vh = 0, (x, t) ∈ (0, 1) × [tn−1, tn]

vh
x (0, t) = vh

x (1, t) = 0, (2.9)

vh(x, tn) = uh(x, tn) − g(x, tn).

Proof. Let qn ∈ A be an optimal control of problem Pn. Note that A is a convex set, for any
ω ∈ A,

qλ = (1 − λ)qn + λω ∈ A, λ ∈ [0, 1].

Hence for any ω ∈ A, the function j (λ) = Jn(q
λ) is well defined and reaches its minimum at

λ = 0. Then we have

j ′(0) = d

dλ
Jn(q

λ)

∣∣∣∣
λ=0

� 0,

i.e., for any ω ∈ A,

d

dλ

∫ 1

0

[
σ

( |qλ − qn−1|2
h

+ |∇qλ|2
)

+
1

h
|u(·, tn; qλ) − g(·, tn)|2

]
dx

∣∣∣∣
λ=0

� 0 (2.10)

where u(x, t; qλ) is the solution of (1.1)–(1.3) corresponding to

q̃ =

⎧⎪⎨
⎪⎩

t − tn−1

h
qλ(x) +

tn − t

h
qn−1(x), tn−1 � t � tn,

t − tk−1

h
qk(x) +

tk − t

h
qk−1(x), tk−1 � t � tk, 1 � k � n − 1,

setting

ξ(x, t) = du(x, t; qλ)

dλ

∣∣∣∣
λ=0

,

inequality (2.10) is transformed into

σ

∫ 1

0

[
qn − qn−1

h
(ω − qn) + ∇qn · ∇(ω − qn)

]
dx

+
1

h

∫ 1

0
(uh(x, tn) − g(x, tn))ξ(x, tn) dx � 0. (2.11)

By direct differentiation with respect to λ on both sides of (1.1)–(1.3), it can be verified
that ξ(x, t) is the solution of the following parabolic equation:

Lξ ≡ ξt − ξxx + qh(x, t)ξ = t − tn−1

h
(qn − ω)uh, (x, t) ∈ (0, 1) × [tn−1, tn]

ξx(0, t) = ξx(1, t) = 0, (2.12)

ξ(x, tn−1) = 0.

7
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Suppose vh(x, t) is the solution of the following problem:

L∗vh ≡ −vh
t − vh

xx + qh(x, t)vh = 0, (x, t) ∈ (0, 1) × [tn−1, tn]

vh
x (0, t) = vh

x (1, t) = 0, (2.13)

vh(x, tn) = uh(x, tn) − g(x, tn)

where L∗ is the adjoint operator of the operator L. From (2.12) and (2.13) we have

0 =
∫ tn

tn−1

∫ 1

0
ξL∗vh dx dt

= −
∫ 1

0
ξ(x, tn)[u

h(x, tn) − g(x, tn)] dx +
∫ tn

tn−1

∫ 1

0
vhLξ dx dt

= −
∫ 1

0
ξ(x, tn)[u

h(x, tn) − g(x, tn)] dx +
∫ tn

tn−1

∫ 1

0

t − tn−1

h
(qn − ω)uhvh dx dt . (2.14)

Combining (2.11) and (2.14), one can easily obtain that

σ

∫ 1

0

[
qn − qn−1

h
(ω − qn) + ∇qn · ∇(ω − qn)

]
dx

+
1

h

∫ tn

tn−1

∫ 1

0

t − tn−1

h
(qn − ω)uhvh dx dt � 0

for any ω ∈ A.
This completes the proof of theorem 2.2. �

3. Some uniform estimates

We will derive some uniform estimates for the sequence of discrete optimal controls
q0, q1, . . . , qN and the discrete reconstruction of unknown coefficient qh(x, t) as h → 0.

Throughout this paper, C will be denoted the different constants which are independent
of parameters h and σ .

Lemma 3.1. Let uh(x, t) be the solution of the following problem:

ut − uxx + q̃(x, t)u = 0, (x, t) ∈ Q (3.1)

ux(0, t) = ux(1, t) = 0 (3.2)

u(x, 0) = u0(x) (3.3)

with q̃(x, t) = qh(x, t). Then there exists a constant C, such that

‖uh‖L∞(Q) +
∫ T

0

∫ 1

0

(∣∣uh
t

∣∣2
+

∣∣uh
xx

∣∣2)
dx dt + max

0�t�T

∫ 1

0

∣∣uh
x

∣∣2
dx � C. (3.4)

The proof of this lemma is standard.

Lemma 3.2. Let qλ = (1 − λ)qn + λqn−1, 0 � λ � 1 and uλ(x, t) = u(x, t; qλ) be the
solution of (3.1)–(3.3) in [0, tn] with

q̃ =

⎧⎪⎨
⎪⎩

t − tn−1

h
qλ(x) +

tn − t

h
qn−1(x), tn−1 � t � tn,

t − tk−1

h
qk(x) +

tk − t

h
qk−1(x), tk−1 � t � tk, 1 � k � n − 1.

(3.5)

8



J. Phys. A: Math. Theor. 41 (2008) 035201 Z-C Deng et al

Then there exists a constant C, such that

‖uλ‖L∞((0,1)×[tn−1−tn]) � C, (3.6)

and∫ tn

tn−1

∫ 1

0

(∣∣uλ
t

∣∣2
+

∣∣uλ
xx

∣∣2)
dx dt + max

0�t�T

∫ 1

0

∣∣uλ
x

∣∣2
dx � C

∫ tn

tn−1

∫ 1

0
|uh|2 dx dt + Ch. (3.7)

Proof. Since the proof of (3.6) is similar to that of (3.4), we only prove (3.7).
Let ω = uλ − uh. Then from (3.1)–(3.3), it can be verified that ω satisfies

ωt − ωxx + q̃ω = (qh − q̃)uh, (x, t) ∈ (0, 1) × [tn−1, tn]

ωx(0, t) = ωx(1, t) = 0 (3.8)

ω(x, tn−1) = 0.

Multiplying equation (3.8) with ωxx and integrating over (0, 1) × [tn−1, t], t ∈ (tn−1, tn],
we obtain that∫ t

tn−1

∫ 1

0
ω2

xx dx dt +
1

2

∫ t

tn−1

∫ 1

0

(
ω2

x

)
t
dx dt

=
∫ t

tn−1

∫ 1

0
q̃ωωxx dx dt +

∫ t

tn−1

∫ 1

0
(q̃ − qh)uhωxx dx dt . (3.9)

Noting the boundedness of q̃, one can easily obtain that∫ t

tn−1

∫ 1

0
ω2

xx dx dt +
1

2

∫ 1

0
ω2

x(x, t) dx

� 1

2

∫ t

tn−1

∫ 1

0
ω2

xx dx dt + C

∫ t

tn−1

∫ 1

0
ω2 dx dt + C

∫ t

tn−1

∫ 1

0
|uh|2 dx dt (3.10)

By noting (3.4) and (3.6), we have

‖ω‖L∞((0,1)×[tn−1−tn]) � C.

Then from (3.10), we get∫ t

tn−1

∫ 1

0
ω2

xx dx dt +
∫ 1

0
ω2

x(x, t) dx � C

∫ t

tn−1

∫ 1

0
|uh|2 dx dt + Ch. (3.11)

From (3.11) and (3.4), one can easily obtain the estimate (3.7).
This completes the proof of lemma 3.2. �

Lemma 3.3. Let vλ(x, t) be the solution of the following problem

−vλ
t − vλ

xx + q̃(x, t)vλ = 0, (x, t) ∈ (0, 1) × [tn−1, tn]

vλ
x (0, t) = vλ

x (1, t) = 0 (3.12)

vλ(x, tn) = uλ(x, tn) − g(x, tn)

where q̃(x, t) is defined by (3.5). Then there exists a constant C, such that

‖vλ‖L∞((0,1)×[tn−1−tn]) � C. (3.13)

Proof. Noting that

‖uλ(x, tn) − g(x, tn)‖L∞((0,1)×[tn−1−tn]) � C,

one can easily obtain the result by using the extremum principle. �

9
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Theorem 3.4. Let qn ∈ A be an optimal control of problem Qn. Then there exists a constant
C, such that

N∑
n=1

∫ 1

0

|qn − qn−1|2
h

dx + max
1�n�N

∫ 1

0
|∇qn|2 dx � C

(
1 +

h

σ 2

)
. (3.14)

Proof. By the definition of qn, i.e., qn is a minimum of Jn(q), we have

Jn(qn) � Jn(qn−1). (3.15)

From (3.15) we have

σ

∫ 1

0

( |qn − qn−1|2
h

+ |∇qn|2 − |∇qn−1|2
)

dx

� 1

h

∫ 1

0
[|u(x, tn; qn−1) − g(x, tn)|2 − |u(x, tn; qn) − g(x, tn)|2] dx (3.16)

where u(x, tn; qn−1) is the solution of (3.1)–(3.3) corresponding to coefficient

q̃ =
⎧⎨
⎩

qn−1(x), tn−1 � t � tn,

t − tk−1

h
qk(x) +

tk − t

h
qk−1(x), tk−1 � t � tk, 1 � k � n − 1.

Summing up (3.16) from n = 1 to k, we have

σ

k∑
n=1

∫ 1

0

|qn − qn−1|2
h

dx + σ

∫ 1

0
|∇qk|2 dx

� σ

∫ 1

0
|∇q0|2 dx +

k∑
n=1

1

h

∫ 1

0
[|u(x, tn; qn−1) − g(x, tn)|2 − |u(x, tn; qn) − g(x, tn)|2] dx.

(3.17)

From the definition of qλ and uλ, we have

|u(x, tn; qn−1) − g(x, tn)|2 − |u(x, tn; qn) − g(x, tn)|2

=
∫ 1

0

d|uλ(x, tn) − g(x, tn)|2
dλ

dλ

= 2
∫ 1

0
(uλ(x, tn) − g(x, tn))

duλ(x, tn)

dλ
dλ.

By same argument used in theorem 2.2, we obtain that∫ 1

0
(uλ(x, tn) − g(x, tn))

duλ(x, tn)

dλ
dx =

∫ tn

tn−1

∫ 1

0

t − tn−1

h
(qn − qn−1)u

λvλ dx dt. (3.18)

Therefore, from lemma 3.1, 3.2 and 3.3 the right side of equality (3.17) can be estimated by
1

h

∫ 1

0
[|u(x, tn; qn−1) − g(x, tn)|2 − |u(x, tn; qn) − g(x, tn)|2] dx

= 2
∫ 1

0
dλ

∫ tn

tn−1

∫ 1

0

t − tn−1

h
· qn − qn−1

h
uλvλ dx dt

� σ

2

∫ tn

tn−1

∫ 1

0

|qn − qn−1|2
h2

dx dt +
C

σ

∫ 1

0
dλ

∫ tn

tn−1

∫ 1

0

|t − tn−1|2
h2

|uλ|2|vλ|2 dx dt

� σ

2

∫ 1

0

|qn − qn−1|2
h

dx +
C

σ
‖uλvλ‖2

L∞((0,1)×[tn−1,tn])

∫ tn

tn−1

|t − tn−1|2
h2

dt

� σ

2

∫ 1

0

|qn − qn−1|2
h

dx +
Ch

σ
. (3.19)

10
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Combining (3.17) and (3.19) one can easily get
k∑

n=1

∫ 1

0

|qn − qn−1|2
h

dx +
∫ 1

0
|∇qk|2 dx

� 2
∫ 1

0
|∇q0|2 dx +

Ch

σ 2
� C

(
1 +

h

σ 2

)
for 1 � k � N .

This completes the proof of theorem 3.4. �
From theorem 3.4 one can easily obtain the following theorem.

Theorem 3.5. Assume that there exists a constant C such that h
σ 2 � C. Then for qh we have

the following estimate∫ T

0

∫ 1

0
|qh

t |2 dx dt + max
0�t�T

∫ 1

0
|∇qh|2 dx � C. (3.20)

Theorem 3.6. There exists a constant C, such that

‖qh‖
C

1
2 , 1

4 (Q̄)
� C. (3.21)

Proof. From the definition of the admissible set and the estimates in theorem 3.4, we have

max
0�t�T

‖qh(·, t)‖H 1(0,1) � C.

Applying Soblev’s embedding theorem, there exists a constant C such that

|qh(x, t) − qh(y, t)| � C|x − y| 1
2

for any t ∈ [0, T ].
To obtain the t-Hö lder estimate for function qh(x, t), we assume that for any given points

(x, t), (x, s) ∈ Q, without loss of generality, the rectangle

D = {(ξ, τ )|x � ξ � x +
√

t − s, s � τ � t} ⊂ Q.

Then we have ∫ t

s

∫ x+
√

t−s

x

qh
τ (ξ, τ ) dξ dτ =

∫ x+
√

t−s

x

(qh(ξ, t) − qh(ξ, s)) dξ

= (qh(x̂, t) − qh(x̂, s))
√

t − s,

where x̂ = x + θ
√

t − s, 0 � θ � 1.
By theorem 3.5 we obtain that

|qh(x̂, t) − qh(x̂, s)| = (t − s)−
1
2

∫ t

s

∫ x+
√

t−s

x

qh
τ (ξ, τ ) dξ dτ

� (t − s)−
1
2

(∫ t

s

∫ x+
√

t−s

x

dξdτ

) 1
2

·
(∫ T

0

∫ 1

0

∣∣qh
t

∣∣2
dx dt

) 1
2

� (t − s)
3
4 − 1

2

(∫ T

0

∫ 1

0

∣∣qh
t

∣∣2
dx dt

) 1
2

� C(t − s)
1
4 .

Then we have

|qh(x, t) − qh(x, s)| � |qh(x, t) − qh(x̂, t)| + |qh(x̂, t) − qh(x̂, s)| + |qh(x̂, s) − qh(x, s)|
� C(t − s)

1
4 .

This completes the proof of theorem 3.6. �
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4. Asymptotic behavior of qh(x, t) as h → 0

In this section, we will discuss the asymptotic behavior of the discrete reconstruction, qh(x, t),
of unknown coefficient as h → 0.

Let

Ã = {q(x, t)|0 < α0 � q � α1, q ∈ H 1(Q) ∩ L∞([0, T ],H 1(0, 1))},
and

q̄h =
{

q0(x), t = t0,

qk(x), tk−1 < t � tk, 1 � k � n.

From the definition of q̄h, one can easily get

max
0�t�T

∫ 1

0
|∇q̄h|2 dx � C.

From the estimates in theorem 3.4, 3.5 and 3.6, we have the following convergence results.

Theorem 4.1. Assume that there exists a constant C such that h
σ 2 � C. Then as h → 0 there

exist a subsequence of qh(x, t) and a function q(x, t) ∈ Ã, such that

qh → q, weakly in H 1(Q),

qh → q, in C(Q̄), (4.1)

q̄h → q, in L2(Q),

∇q̄h → ∇q, weakly in L2(Q).

Proof. We need only to prove that qh and q̄h converge to the same function.
From theorem 3.4, we obtain∫ T

0

∫ 1

0
|qh − q̄h|2 dx dt =

N∑
n=1

∫ tn

tn−1

∫ 1

0

(tn − t)2

h2
(qn − qn−1)

2 dx dt

= h2

3

N∑
n=1

∫ 1

0

|qn − qn−1|2
h

dx � Ch2

This implies the result. �

Lemma 4.2. Let vh(x, t) be the solution of problem (2.9). Then there exists a constant C
which is independent of h, such that∫ tn

tn−1

∫ 1

0

∣∣vh
t

∣∣2
dx dt + max

tn−1�t�tn

∫ 1

0

∣∣vh
x

∣∣2
dx � C (4.2)

and

‖vh‖
C

1
2 , 1

4 ([0,1]×[tn−1,tn])
� C. (4.3)

Proof. The proof of (4.2) is standard. The estimate (4.3) can be derived by the same argument
used in theorem 3.6. �

Function q(x, t) = limh→0 qh(x, t) is the reconstruction of the unknown coefficient. We
call it the limiting optimal control of problem P. Now we derive the necessary condition of
q(x, t).

12
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Theorem 4.3. Assume that there exists a constant C such that h
σ 2 � C. Let q(x, t) be the

limiting optimal control and u(x, t) be the solution of the following problem:

ut − uxx + q(x, t)u = 0, (x, t) ∈ Q (4.4)

ux(0, t) = ux(1, t) = 0 (4.5)

u(x, 0) = u0(x). (4.6)

Then, for any ω ∈ Ã, we have∫
Q

[
qt (ω − q) + ∇q · ∇(ω − q) +

1

2σ
(u − g)u(q − ω)

]
dx dt � 0. (4.7)

Proof. Note that ‖qh‖
C

1
2 , 1

4 (Q̄)
� C. Without loss of generality, we can assume α � 1

2 , then
Schauder’s theory guarantees that

‖uh‖
C

2+α,1+ α
2 (Q̄)

� C, (4.8)

and

uh → u in C2,1(Q̄).

We prove (4.7) for ω ∈ Ã
⋂

C∞(Q̄) firstly.
Let ω be a function in Ã

⋂
C∞(Q̄), then ω(x, tn) ∈ A. Thus from the necessary condition

(2.8) of sequence of optimal control, we get∫ 1

0

[
qn(x) − qn−1(x)

h
(ω(x, tn) − qn(x)) + ∇qn(x) · (∇ω(x, tn) − ∇qn(x))

+ fn(x)(qn(x) − ω(x, tn))

]
dx � 0, (4.9)

where

fn(x) = 1

σh

∫ tn

tn−1

t − tn−1

h
uh(x, t)vh(x, t) dt, 1 � n � N. (4.10)

From the definition of qh and q̄h, it follows that∫ 1

0

∫ tn

tn−1

[
qh

t (x, t)(ω(x, tn) − q̄h(x, t)) + ∇q̄h(x, t) · (∇ω(x, tn) − ∇q̄h(x, t))

+
t − tn−1

σh
uh(x, t)vh(x, t)(q̄h(x, t) − ω(x, tn))

]
dt dx � 0.

Therefore, we obtain∫ 1

0

∫ tn

tn−1

[
qh

t (x, t)(ω(x, t) − q̄h(x, t)) + ∇q̄h(x, t) · (∇ω(x, t) − ∇q̄h(x, t))

+
t − tn−1

σh
uh(x, t)vh(x, t)(q̄h(x, t) − ω(x, t))

]
dt dx � En (4.11)

where

En =
∫ 1

0

∫ tn

tn−1

[
qh

t (x, t)(ω(x, t) − ω(x, tn)) + ∇q̄h(x, t) · (∇ω(x, t) − ∇ω(x, tn))

+
t − tn−1

σh
uh(x, t)vh(x, t)(ω(x, tn) − ω(x, t))

]
dt dx

= I1 + I2 + I3.

13
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By the smoothnes‘s of ω, there exists a constant C which is independent of h, such that

|ω(x, t) − ω(x, tn)| = |ωt(x, tn − θ(tn − t))(t − tn)| � Ch,

where 0 � θ � 1. Then, for item I1, we have the following estimate

|I1| � Ch

∫ 1

0

∫ tn

tn−1

∣∣qh
t (x, t)

∣∣dx dt

� Ch

(∫ 1

0

∫ tn

tn−1

∣∣qh
t (x, t)

∣∣2
dx dt +

∫ 1

0

∫ tn

tn−1

dx dt

)

� Ch

∫ 1

0

∫ tn

tn−1

∣∣qh
t (x, t)

∣∣2
dx dt + Ch2.

So, for I2 we have similar estimate by the same argument of I1. For item I3 we have the
following estimate

|I3| � Ch

σ

∫ tn

tn−1

t − tn−1

h
dt

� Ch2

σ
� Ch

3
2

√
h

σ
� Ch

3
2 .

Therefore, for En, we obtain that

|En| � C
(
h2 + h

3
2
)

+ Ch

∫ 1

0

∫ tn

tn−1

∣∣qh
t

∣∣2
dx dt + Ch2

∫ 1

0
|∇qn|2 dx.

It is easily seen that
N∑

n=1

|En| � Ch
1
2 . (4.12)

From (4.11) and (4.12), we have

σ

∫ 1

0

∫ T

0

[
qh

t (x, t)(ω(x, t) − q̄h(x, t)) + ∇q̄h(x, t) · (∇ω(x, t) − ∇q̄h(x, t))
]

dt dx

+
N∑

n=1

∫ 1

0

∫ tn

tn−1

t − tn−1

h
uh(x, t)vh(x, t)(q̄h(x, t) − ω(x, t)) dt dx � −Ch

1
2 .

(4.13)

By noting that

vh(x, tn) = uh(x, tn) − g(x, tn),

we obtain

|vh(x, t) − (uh(x, t) − g(x, t))|
� |vh(x, t) − vh(x, tn)| + |(uh(x, tn) − g(x, tn)) − (uh(x, t) − g(x, t))|
� Ch

α
2 ,

where we have used (2.1, (4.8) and lemma 4.2.
Hence∣∣∣∣∣

N∑
n=1

∫ 1

0

∫ tn

tn−1

t − tn−1

h
uh(x, t)[vh(x, t) − (uh(x, t) − g(x, t))](q̄h(x, t) − ω(x, t)) dt dx

∣∣∣∣∣
� Ch

α
2 . (4.14)
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From (4.13) and (4.14), we obtain that

σ

∫ 1

0

∫ T

0

[
qh

t (x, t)(ω(x, t) − q̄h(x, t)) + ∇q̄h(x, t) · (∇ω(x, t) − ∇q̄h(x, t))
]

dt dx

+
N∑

n=1

∫ 1

0

∫ tn

tn−1

t − tn−1

h
(uh(x, t) − g(x, t))uh(x, t)(q̄h(x, t) − ω(x, t)) dt dx

� − Ch
α
2 . (4.15)

Note that ∫ tn

tn−1

(
t − tn−1

h
− 1

2

)
dt = 0.

By the direct calculation, we have∫ tn

tn−1

t − tn−1

h
f h(t) dt − 1

2

∫ tn

tn−1

f h(t) dt

=
∫ tn

tn−1

(
t − tn−1

h
− 1

2

)
(f h(t) − f h(tn)) dt, (4.16)

where

f h(t) =
∫ 1

0
(uh(x, t) − g(x, t))uh(x, t)(q̄h(x, t) − ω(x, t)) dx.

It is easily seen that

f h(t) ∈ C
α
2 [tn−1, tn].

Hence we have from (4.16)∣∣∣∣
∫ tn

tn−1

t − tn−1

h
f h(t) dt − 1

2

∫ tn

tn−1

f h(t) dt

∣∣∣∣ � ‖f h‖
C

α
2 [tn−1,tn]h

1+ α
2 . (4.17)

From (4.17) we obtain that∣∣∣∣
∫ 1

0

∫ tn

tn−1

t − tn−1

h
(uh(x, t) − g(x, t))uh(x, t)(q̄h(x, t) − ω(x, t)) dt dx

− 1

2

∫ 1

0

∫ tn

tn−1

(uh(x, t) − g(x, t))uh(x, t)(q̄h(x, t) − ω(x, t)) dt dx

∣∣∣∣ � Ch1+ α
2 .

(4.18)

Summing up (4.18) from n = 1 to N, we have∣∣∣∣∣
N∑

n=1

∫ 1

0

∫ tn

tn−1

t − tn−1

h
(uh(x, t) − g(x, t))uh(x, t)(q̄h(x, t) − ω(x, t)) dt dx

− 1

2

∫
Q

(uh(x, t) − g(x, t))uh(x, t)(q̄h(x, t) − ω(x, t)) dt dx

∣∣∣∣ � Ch
α
2 .

(4.19)

Combining (4.15) and (4.19), one can easily obtain∫
Q

[
qh

t (ω − q̄h) + ∇q̄h · ∇(ω − q̄h) +
1

2σ
(uh − g)uh(q̄h − ω)

]
dx dt � −Ch

α
2 . (4.20)
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Letting h → 0, we deduce that, from theorem 4.1 and (4.20)∫
Q

[
qt (ω − q) + ∇q · ∇ω +

1

2σ
(u − g)u(q − ω)

]
dx dt − lim sup

h→0

∫
Q

|∇q̄h|2 dx dt � 0.

(4.21)

By the property of weak convergence, we have

lim inf
h→0

∫
Q

|∇q̄h|2 dx dt �
∫

Q

|∇q|2 dx dt.

Then from (4.21), we deduce that∫
Q

[
qt (ω − q) + ∇q · ∇(ω − q) +

1

2σ
(u − g)u(q − ω)

]
dx dt � 0 (4.22)

for any ω ∈ Ã
⋂

C∞(Q̄).
The necessary condition (4.22) remains true for any ω ∈ Ã by the approximation

argument.
This completes the proof of theorem 4.3. �

Corollary 4.4. Let q(x, t) be the limiting optimal control and u(x, t) be the solution of
(4.4)–(4.6). Then, for any ω ∈ Ã, we have∫ s

0

∫ 1

0

[
qt (ω − q) + ∇q · ∇(ω − q) +

1

2σ
(u − g)u(q − ω)

]
dx dt � 0, (4.23)

for any s ∈ [0, T ].

Proof. Let δ > 0 and ηδ ∈ C1[0, T ] be a cut-off function such that

ηδ(t) =
{

1, 0 � t � s

0, s + δ � t � T
.

Note that Ã is a convex set, for any ω ∈ Ã,

ω̃ = q + ηδ(ω − q) ∈ Ã.

From theorem 4.3 we have∫
Q

[
qt (ω̃ − q) + ∇q · ∇(ω̃ − q) +

1

2σ
(u − g)u(q − ω̃)

]
dx dt � 0.

Hence ∫
Q

[
qt (ω − q) + ∇q · ∇(ω − q) +

1

2σ
(u − g)u(q − ω)

]
ηδ(t) dx dt � 0.

Letting δ → 0, we obtain the result. �

5. Stability and uniqueness

Now we derive the stability and uniqueness of limiting optimal controls in the sense of L2

norm.

Theorem 4.1. Suppose that q0(x), q̄0(x), g(x, t), ḡ(x, t) are given functions, q0, q̄0 ∈ A and
g, ḡ satisfy conditions (2.1) and (2.2). Let q(x, t), q̄(x, t) be the limiting optimal controls
corresponding to (q0, g), (q̄0, ḡ), respectively. Then there exists a constant C such that

max
t∈[0,T ]

∫ 1

0
|q − q̄|2 dx +

∫
Q

|∇(q − q̄)|2 dx dt � C

σ

(∫ 1

0
|q0 − q̄0|2 dx +

∫
Q

|g − ḡ|2 dx dt

)
.

(5.1)
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Proof. Let u(x, t), ū(x, t) be the solution of (4.4)–(4.6) corresponding to q(x, t), q̄(x, t),
respectively. It can be easily verified that W = u − ū satisfies the following equation

Wt − Wxx + q(x, t)W = (q̄ − q)ū, (x, t) ∈ Q (5.2)

Wx(0, t) = Wx(1, t) (5.3)

W(x, 0) = 0. (5.4)

By L2 theory for parabolic equation (see [13]), we deduce that

‖W‖L2(Qs) � C‖q̄ − q‖L2(Qs), (5.5)

where s ∈ [0, T ],Qs = (0, 1) × [0, s].
From corollary 4.4, we have, for any s ∈ [0, T ]∫ s

0

∫ 1

0

[
qt (q̄ − q) + ∇q · ∇(q̄ − q) +

1

2σ
(u − g)u(q − q̄)

]
dx dt � 0, (5.6)

and∫ s

0

∫ 1

0

[
q̄t (q − q̄) + ∇q̄ · ∇(q − q̄) +

1

2σ
(ū − ḡ)ū(q̄ − q)

]
dx dt � 0. (5.7)

Hence∫ s

0

∫ 1

0
[(q − q̄)(q − q̄)t + |∇(q − q̄)|2] dx dt

� 1

2σ

∫ s

0

∫ 1

0
(q − q̄)[(u − g)u − (ū − ḡ)ū] dx dt. (5.8)

Therefore, we obtain

σ

∫ 1

0
(q − q̄)2(x, s) dx + 2σ

∫ s

0

∫ 1

0
|∇(q − q̄)|2 dx dt

� σ

∫ 1

0
(q0 − q̄0)

2 dx +
∫ s

0

∫ 1

0
(q − q̄)2 dx dt +

∫ s

0

∫ 1

0
[(u − g)u − (ū − ḡ)ū]2 dx dt.

(5.9)

Note that

[(u − g)u − (ū − ḡ)ū]2 = [(u2 − ū2) + (ūḡ − ug)]2

� C[(u2 − ū2)2 + (ūḡ − ūg + ūg − ug)2]

� C[(u + ū)2(u − ū)2 + ū2(ḡ − g)2 + g2(ū − u)2]

� C[(g − ḡ)2 + (u − ū)2].

Hence∫ s

0

∫ 1

0
[(u − g)u − (ū − ḡ)ū]2 dx dt � C

(‖g − ḡ‖2
L2(Qs)

+ ‖u − ū‖2
L2(Qs)

)
. (5.10)

From (5.5), (5.10) and (5.9), we have

σ

∫ 1

0
(q − q̄)2(x, s) dx + 2σ

∫ s

0

∫ 1

0
|∇(q − q̄)|2 dx dt

� σ

∫ 1

0
(q0 − q̄0)

2 dx + C

∫ s

0

∫ 1

0
(q − q̄)2 dx dt + C

∫ s

0

∫ 1

0
(g − ḡ)2 dx dt .

(5.11)
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By Gronwall’s inequality we obtain that∫ 1

0
(q − q̄)2(x, s) dx +

∫ s

0

∫ 1

0
|∇(q − q̄)|2 dx dt

� C

σ

(∫ 1

0
(q0 − q̄0)

2 dx +
∫ s

0

∫ 1

0
(g − ḡ)2 dx dt

)

for any s ∈ [0, T ].
This completes the proof. �

Remark 5.1. It should be mentioned that the regularization parameter plays a major role in
the numerical simulation of ill-posed problems. From theorem 5.1 we can obtain that if there
exists a constant δ such that

‖q0 − q̄0‖ � δ, ‖g − ḡ‖ � δ, and
δ2

σ
→ 0,

then the reconstructed limiting optimal control is unique and stable. In general, for ill-posed
problems a convergence result can be obtained when the regularization parameter depends in
a proper way on data error which goes to zero. Moreover, a rate of convergence can also be
derived under some additional assumptions. For more detailed discussion on the regularization
parameter, we refer the readers to the references, e.g., in [5, 11, 12].

6. Concluding remarks

The inverse problem of identifying the radiative coefficient in heat conduction problem from
some additional conditions is very important in some engineering texts and many industrial
applications. The difficulty is due to the lack of conventional stability and to nonlinearity and
nonconvexity.

In this paper, we solve the inverse problem P of recovering the radiative coefficient q(x, t)

in the following heat conduction equation

ut − uxx + q(x, t)u = 0

in an optimal control framework. Such problem is a natural extension of that in [31]. The
unknown coefficient in [31] is purely space dependent, while in this paper it not only depends
on the space variable x, but also depends on the time t, which may occur in the case that the
property of heat conductor varies with space and time. Based on the idea in [31], we transform
problem P into a sequence of inverse problems Pn, n = 1, 2, . . . , N, which are similar to
the problem in [31], i.e., the unknown coefficient is purely space dependent. The existence,
as well as the necessary condition of the minimizer qn(x) for problem Pn is established. By
the obtained qn, we define the discrete reconstruction qh(x, t) and prove that there exists a
subsequence of qh(x, t) converging to a function q(x, t) which is called the limiting optimal
control of problem P. Finally, we obtain the uniqueness and stability of q(x, t) in the sense of
L2 norm.

The paper focuses on the theoretical analysis of the 1D inverse problem. For the
multidimensional case, i.e., the determination of q(x, t) in the following equation:

ut − �u + q(x, t)u = 0, (x, t) ∈ Q = � × (0, T ],

where � ∈ Rm(m � 1) is a given bounded domain, we believe the method used in this paper
is also applicable.
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The mathematical model discussed in the paper is linear. Next, we will consider the
nonlinear case, e.g., the determination of a pair (q, u) in the following nonlinear parabolic
equation

ut − �u + q(x, t)f (u) = 0, (x, t) ∈ Q = (0, 1) × (0, T ]

from the over-specified data u(x, t) = g(x, t) (see [33], where the purely space dependent
case, i.e., q = q(x), has been considered carefully).
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